"Precise" Temperament Tuning

By Robert Edward Grant
July 24, 2020

The Flower of Life/Hexa-Pentakis

Overlapping Squares from the Flower of Life
Forming A Series of Golden Rectangles
(Ratio of 1:1.618 = $\boldsymbol{\Phi}$) Across the Flower of Life Structure

Likewise, the Hexa-Pentakis (and Truncated Icosahedron -Archimedean Solid) Bring together the Hexagon and the Golden $\boldsymbol{\Phi}$ ‘Phi-ve’ (Pentagonal) Ratio

Fig.5: Definition of the circular complementary relationship between a set of four numbers with A being one member of the set.

The Special Role of the Numbers 2 and 3 in the Numbers Series: The Primordial Primes

Fig.4: Prime numbers on the prime moduli adding up to numbers on the central moduli.
"Those numbers that are not prime, while at the same time occupying the prime moduli, are also unique because they are the product of primes larger than or equal to 5 and/or semiprimes only. They are labeled Quasi-prime as to distinguish them from Semi-prime numbers3, which are the product of any two prime numbers, including 2 and 3. "

"There is music in the humming of the strings, there is geometry in the spacing of the spheres."

Mystery of the Tetraktys: 3^{\wedge} n and 2^{\wedge} n Research

‘The Pythagorean Tetraktys’
 and Flower of Life

1

2

3

4

Musical Geometry

The Tetrahedron-Tetraktys Informs the Geometric Relationship between Major and Minor Chords

1:1	Unison
9:8	Major 2nd
5:4	Major 3rd
4:3	Perfect 4th
3:2	Perfect 5th
5:3	Major 6th
9:5	Major 7th
2:1	Octave

1

2

3

4

The Cuboctahedron

Informs All Major and Minor Chords
"Just" Scale Tuning

The Major 3rd Problem with ‘Just’ Scale Tuning

-Tuning requires correct mathematical ratios for the Perfect 5th, Major 3rd and Octave Doubling; all other ratios for all other notes can be found

144hz D3: 144hz

"Major 3rd Problem": 843hz $=$ 864hz

D4: 281.25hz vs Major 3rd D4: 288hz
"Major 3rd Problem": 281.25hz $=$ 288hz

The Ancient Problem of the 'Cube of Delos':

^ History

The problem owes its name to a story concerning the citizens of Delos, who consulted the orac e at Delphi in order to learn how to defea a plague sen by Apollo. ${ }^{[5]}$ According to Plutarn , .'] ${ }^{\text {i }}$ it was the citizens of Delos who consulted the oracle at Delphi, seeking a solution for their internal political problems at the time, which had intensified relationships among the citizens. The oracle responded that they must double the size of the altar to Apollo, which was a regular cube. The answer seemed strange to the Delians and they consulted Plato, who was able to interpret the oracle as the mathematical problem of doubling the volume of a given cube, thus explaining the oracle as the advice of Apollo for the citizens of Delos to occupy themselves with the study of geometry and mathematics in order to calm down their passions. ${ }^{[7]}$

Doubling the cube

From Wikipedia, the free encyclopedia
Doubling the cube, also known as the Delian problem, is an ancient ${ }^{[1]}$ geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible using only a compass and straightedge, but even in ancient times solutions were known that employed other tools.
The Egyptians, Indians, and particularly the Greeks ${ }^{[2]}$ were aware of the problem and made many futile
 attempts at solving what they saw as an obstinate but soluble problem. ${ }^{[3][4]}$ However, the nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837.

In algebraic terms, doubling a unit cube requires the construction of a line segment of length x, where $x^{3}=2$; in other words, $x=\sqrt[3]{2}$, the cube root of two. This is because a cube of side length 1 has a volume of $1^{3}=1$, and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2 . The impossibility of doubling the cube is therefore equivalent to the statement that $\sqrt[3]{2}$ is not a constructible number. This is a consequence of the fact that the coordinates of a new point constructed by a compass and straightedge are roots of polynomials over the field generated by the coordinates of previous points, of no greater degree than a quadratic. This implies that the degree of the field extension generated by a constructible point must be a power of 2 . The field extension generated by $\sqrt[3]{2}$, however, is of degree 3 .

Volume of the cube doubles

SOLUTION:

A Few Unique Properties of 1.26...... $\sqrt[3]{2}$

1.) $1.26^{\wedge} 4=1.26 \times 2 . \ldots . .2 .52$
2.16/1.26 = 1.714285
$=12 / 7$
3.) $\pi(1.26)=1 / .252$
4.) $e / 1.26=2.16$
5.) $e-1 / 1.26=1 / .73$

‘Just’ Scale Tuning can be Adjusted Using the Pythagorean Comma Bringing it More in Line with Equal Temperament Tuning

JUST Scale Tuning Requires the
Pythagorean Comma (1.0136)
Adjustment to Fix the
"Major 3rd Problem."
What's the Major 3rd Problem?
$5 / 4$ (1.25 x) is not the correct ratio for the Major 3rd. This is a Fraction, and it should be a CONSTANT of 1.259921 (1.26)

Here's why: The Octave Doubling
Ratio is $2.00 .1\left(1.25^{\wedge} 3\right) \neq 2.00$
In contrast, 1 (1.26^3 = 2.00)

	Interval	Ratio to Fundamental Just Scale	Ratio to Fundamental Equal Temperament	$\underline{\text { Ratio }}$
	\rightarrow Unison	1.0000	1.0000	+.00
	Minor Second	$25 / 24=1.0417$	1.05946	
	Major Second	9/8 $=1.1250$	1.12246	
	Minor Third	$6 / 5=1.2000$	1.18921	
E	\rightarrow Major Third	$5 / 4=1.2500$	1.25992	+. 0
¢	Fourth	$4 / 3=1.3333$	1.33483	
\%	Diminished Fifth	$45 / 32=1.4063$	1.41421	
业	\rightarrow Fifth	$3 / 2=1.5000$	1.49831	-. 001
$\stackrel{\rightharpoonup}{\mathbf{o}}$	Minor Sixth	$8 / 5=1.6000$	1.58740	
	Major Sixth	$5 / 3=1.6667$	1.68179	
	Minor Seventh	$9 / 5=1.8000$	1.78180	
	Major Seventh	$15 / 8=1.8750$	1.88775	
	\rightarrow Octave	2.0000	2.0000	+. 00

$$
\begin{aligned}
& \text { "The ratio of } 5 / 4 \text { (1.25) is wholly inadequate as a viable approach for the } \\
& \text { Major 3rd, as, if continued, will never achieve a correct doubling of an } \\
& \text { octave. This is the interval that totally destroys "Just" Tuning as a viable } \\
& \text { uning approach. It is so obvious in fact, that I believe that Pythagoras must }
\end{aligned} \begin{gathered}
\text { R. Grant } \\
7-17-20
\end{gathered}
$$

have intentionally obfuscated it to conceal the correct 1.26 ratio."

But, Does Nature Make Such Linear Separations for Musical Notes?
How to reconcile the 'convenience' of Equal Temperament with the clean mathematical intervals of 'Just' Scale Tuning?

‘The Controversy’

"Just intonation emphasizes bright, booming perfect thirds, but the way the maths works out, that means the fifth between D and A is pushed out of tune. Equal temperament pretends you can have it both ways; Just Intonation makes a conscious choice about which intervals matter most. The argument goes that equal temperament is becoming increasingly streamlined and corporate, and man's capacity to hear and feel subtle inflections of tuning is now in slow retreat."
-Philip Clark

Equal Temperament

12 Equal/Linear Separations of the Frequency Range of an Octave

Equal Temperament Transition From Just Tuning

Interval	Ratio to Fundamental Just Scale	Ratio to Fundamental Equal Temperament
Unison	1.0000	1.0000
Minor Second	$25 / 24=1.0417$	1.05946
Major Second	$9 / 8=1.1250$	1.12246
Minor Third	$6 / 5=1.2000$	1.18921
Major Third	$5 / 4=1.2500$	1.25992
Fourth	$4 / 3=1.3333$	1.33483
Diminished Fifth	$45 / 32=1.4063$	1.41421
Fifth	$3 / 2=1.5000$	1.49831
Minor Sixth	$8 / 5=1.6000$	1.58740
Major Sixth	$5 / 3=1.6667$	1.68179
Minor Seventh	$9 / 5=1.8000$	1.78180
Major Seventh	$15 / 8=1.8750$	1.88775
Octave	2.0000	2.0000

REG

Equal Temperament Equation		'Reduced
1.00	1.00	1.00
$\sqrt[12 / 1]{2}$	1.059463094359295	$\sqrt[12]{2}$
12/2/2	1.122462048309373	6_{2}
$\sqrt[12 / 3]{ } 2$	1.189207115002721	$\sqrt[4]{2}$
$\sqrt[12 / 4]{2}$	1.259921049894873	$\sqrt[3]{2}$
$\sqrt[12 / 5]{2}$	1.334839854170034	${ }^{12 / 5} / 2$
${ }^{12 / 6} 2$	1.414213562373095	$\sqrt{ } 2$
$\sqrt[{12 / \sqrt{2}}]{ }$	1.498307076876681	
$\sqrt[12 / 8]{2}$	1.587401051968199	$\sqrt[3 / 2]{2}$
${ }^{12 / 9} 2$	1.681792830507429	$\sqrt[4 / 3]{ } 2$
$\sqrt[12 / 10]{2}$	1.781797436280679	$\sqrt{6 / 5} 2$
$\sqrt[12 / 1]{1} 2$	1.887748625363387	${ }^{12 / 111} / 2$
2.00	2.00	2.00

The Mathematics of Equal Temperament is Based Upon $\sqrt{ }$ 2...

With One Adjustment to the Major 3rd (from 1.25x to 1.26x) 'Just' Scale Tuning Reconciles with Equal Temperament in a New Tuning:'Precise’ Temperament Tuning in 432hz

Interval	Ratio to Fundamental Just Scale	Ratio to Fundamental Equal Temperament
Unison	1.0000	1.0000
Minor Second	$25 / 24=1.0417$	1.05946
Major Second	$9 / 8=1.1250$	1.12246
Minor Third	$6 / 5=1.2000$	1.18921
Major Third	$5 / 4=1.2500$	1.25992
Fourth	$4 / 3:=1.3333$	1.33483
Diminished Fifth	$45 / 32=1.4063$	1.41421
Fifth	$3 / 2:=1.5000$	1.49831
Minor Sixth	$8 / 5=1.6000$	1.58740
Major Sixth	$5 / 3=1.6667$	1.68179
Minor Seventh	$9 / 5=1.8000$	1.78180
Major Seventh	$15 / 8=1.8750$	1.88775
Octave	2.0000	2.0000

Ratio to
Fundamental
Precise Temper
1.00
1.058
1.125
1.190
1.26
1.333
1.414
1.5
1.587
1.886
1.089
R. Grant
7-17-20

'Precise' Temperament Tuning in 432hz

'Precise Temperament' vs Equal/Just								
							Precise Tempered$\underline{\text { 432hz }}$	Ratio to Fundamental Precise Temp.
Interval	Ratio to Fundamental Just Scale	Ratio to Fundamental Equal Temperament	Equal Tempered$432 \mathrm{hz}$			$\underline{\text { Ratio }}$		
Unison	1.0000	1.0000	432hz	+.081 hz	A5	+. 000019	432.081216 hz	1.00
Minor Second	$25 / 24=1.0417$	1.05946	457.688 hz	-.459hz	A\#	-. 001	457.2288 hz	1.058
Major Second	$9 / 8=1.1250$	1.12246	484.903hz	+1.188hz	B	+. 00245	486.091368 hz	1.125
Minor Third	$6 / 5=1.2000$	1.18921	513.737 hz	+.742hz	c	+. 0014	514.4791038912 hz	1.190
Major Third	$5 / 4=1.2500$	1.25992	544.285 hz	+.137hz	C\#	+. 00025	544.42233216 hz	1.26
Fourth	$4 / 3=1.3333$	1.33483	576.650hz	-.541 hz	D	-. 00094	576.108288hz	1.333
Diminished Fifth	$45 / 32=1.4063$	1.41421	610.940 hz	. 000 hz	D\#	.000hz	610.9402589451771 hz	z 1.414
Fifth	$3 / 2=1.5000$	1.49831	647.268 hz	+.975hz	E	+. 0015	648.243670902912 hz	1.50
Minor Sixth	$8 / 5=1.6000$	1.58740	685.757 hz	+.215hz	F	+. 00031	685.9721385216 hz	1.587
Major Sixth	$5 / 3=1.6667$	1.68179	726.534 hz	-.774hz	F\#	-. 001	72.76 hz	1.68
Minor Seventh	$9 / 5=1.8000$	1.78180	769.736 hz	+1.982hz	G	+. 0025	771.7186558368 hz	1.786
Major Seventh	$15 / 8=1.8750$	1.88775	815.507 hz	+1.126hz	G\#	+. 0014	816.63349824hz	1.889
Octave	2.0000	2.0000	864hz	+.162hz	A6	+. 00018	864.162432hz	2.00
								$\underset{\substack{\text { R. Grant } \\ \hline \\ \hline}}{ }$

"Just" Scale Tuning

1:1	Unison
9:8	Major 2nd
5:4	Major 3rd
4:3	Perfect 4th
3:2	Perfect 5th
5:3	Major 6th
9:5	Major 7th
2:1	Octave

"Equal" Temperament Tuning

$\xrightarrow{\text { 1:1 }}$9:8 Major 2nd 5:4 Major 3rd	
4:3	Perfect 4th
3:2	Perfect 5th
5:3	Major 6th
9:5	Major 7th
2:1	Octave

"Precise" Temperament Tuning

1:1	Unison
9:8	Major 2nd
5:4	Major 3rd
4:3	Perfect 4th
3:2	Perfect 5th
5:3	Major 6th
9:5	Major 7th
2:1	Octave

Mathematical Interval Perfection of Major 2nd, Perfect 5th and Perfect 4th

Not versatile across Key Transitions
"Equal" Temperament Tuning

Why Precise Temperament Tuning?

'Precise Temperament'

Musical Geometry
The Cuboctahedral Structure Informs Major and Minor Chords

'Precise Temperament'

Musical Geometry
The Cuboctahedral Structure Informs Major and Minor Chords

But What About those Very Unique Decimal Extensions that Appear Using 1.26 as the Major 3rd Interval in Precise Temperament Tuning?......

'Just Tuning' Intervals as Fractals in a Blockchain-like Configuration of Chords?

Let's take a close look at a few of these.....

D3: 144.027072hz

A1: 27 hz
D2: 72hz
A is the Major 5th of D

B4: 243.045684hz

F\#1: 45hz
F4: 684hz
Perfect 4th and Major 7th of F\#

G\#6: 914.4576hz

D3 144hz
D5: 576hz
D is Perfect 4th; G\# is the Major 7th of A

A5: 432.081216hz

E2: 81 hz
E is the Perfect 5th of A

D5: 576.108288hz

A3: 108hz
D4: 288 hz
D is the Major 4th of A

Blah, blah, blah...... but how does it sound?

https://soundcloud.com/jasonmartineau/tracks

How does 'Precise' Temperament Tuning effect the inherent Undertone Series? What is the potential for new sound-based technologies? How might this advance our understanding of gravity, radiation, time and energy?

More research and time will tell......
~Music of the Stan Tetrahedron ~

The Flower of Life
 Squares in Rotational Positions

The Flower of Life

Squares Only

The Flower of Life

Squares Only

The Flower of Life

Squares in Rotation
120° Rotation

The Flower of Life

Circles Only

The Flower of Life

Circles and Squares

The Flower of Life

Squares Only

Geometry and Music: One and the Same.....

