"Precise" Temperament Tuning

By Robert Edward Grant July 24, 2020

The Flower of Life/Hexa-Pentakis

Overlapping Squares from the Flower of Life Forming A Series of Golden Rectangles (Ratio of 1:1.618 = Φ) Across the Flower of Life Structure

The Special Role of the Numbers 2 and 3 in the Numbers Series: The Primordial Primes

Fig.4: Prime numbers on the prime moduli adding up to numbers on the central moduli.

"Those numbers that are not prime, while at the same time occupying the prime moduli, are also unique because they are the product of primes larger than or equal to 5 and/or semiprimes only. They are labeled Quasi-prime as to distinguish them from Semi-prime numbers3, which are the product of any two prime numbers, including 2 and 3."

Fig.5: Definition of the circular complementary relationship between a set of four numbers with A being one member of the set.

"There is music in the humming of the strings, there is geometry in the spacing of the spheres."

Mystery of the Tetraktys: 3ⁿ and 2ⁿ Research

'The Pythagorean Tetraktys' and Flower of Life

R. Grant 7-17-20

Musical Geometry

The Tetrahedron-Tetraktys Informs the Geometric Relationship between Major and Minor Chords

R. Grant 7-17-20

7-17-20

R. Grant 7-17-20

The Major 3rd Problem with 'Just' Scale Tuning

R. Grant 7-17-20

Deminio : maginato made nella fun opa ganginatura.

Conversioner and the mode of the oper transfer there of the relation for the form for a forther matters of the matters of the

The Vitruvian Man

Leonardo's work on the Cube of Delos

WYA2

pimmip t " reinigeta"

121

126

De chubiche mente multiplicherne

The Ancient Problem of the 'Cube of Delos': $\sqrt[3]{2}$

History

The problem owes its name to a story concerning the citizens of Delos, who consulted the orace at Delphi in order to learn how to defeat a plague sent by Apollo.^[5] According to Plutare^{[,[6]} it was the citizens of Delos who consulted the oracle at Delphi, seeking a solution for their internal political problems at the time, which had intensified relationships among the citizens. The oracle responded that they must double the size of the altar to Apollo, which was a regular cube. The answer seemed strange to the Delians and they consulted Plato, who was able to interpret the oracle as the mathematical problem of doubling the volume of a given cube, thus explaining the oracle as the advice of Apollo for the citizens of Delos to occupy themselves with the study of geometry and mathematics in order to calm down their passions.^[7]

Doubling the cube

From Wikipedia, the free encyclopedia

Doubling the cube, also known as the **Delian problem**, is an ancient^[1] geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible using only a compass and straightedge, but even in ancient times solutions were known that employed other tools.

The Egyptians, Indians, and particularly the Greeks^[2]

A unit cube (side = 1) and a cube with twice the volume (side = $\sqrt[3]{2}$ = 1.2599210498948732... OEIS: A002580 (2).

were aware of the problem and made many futile attempts at solving what they saw as an obstinate but

soluble problem.^{[3][4]} However, the nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837.

In algebraic terms, doubling a unit cube requires the construction of a line segment of length *x*, where $x^3 = 2$; in other words, $x = \sqrt[3]{2}$, the **cube root of two**. This is because a cube of side length 1 has a volume of $1^3 = 1$, and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2. The impossibility of doubling the cube is therefore equivalent to the statement that $\sqrt[3]{2}$ is not a constructible number. This is a consequence of the fact that the coordinates of a new point constructed by a compass and straightedge are roots of polynomials over the field generated by the coordinates of previous points, of no greater degree than a quadratic. This implies that the degree of the field extension generated by a constructible point must be a power of 2. The field extension generated by $\sqrt[3]{2}$, however, is of degree 3.

A Few Unique Properties of 1.26..... $\sqrt[3]{2}$

1.) $1.26^{4} = 1.26 \times 2....2.52$ 2.16/1.26 = 1.714285 = 12/73.) $\pi(1.26) = 1/.252$ 4.) e/1.26 = 2.165.) e-1/1.26 = 1/.73

'Just' Scale Tuning can be Adjusted Using the Pythagorean Comma Bringing it More in Line with Equal Temperament Tuning

JUST Scale Tuning Requires the			Interval	Ratio to Fundamental Just Scale	Ratio to Fundamental Equal Temperament	<u>Δ Ratio</u>
Pythagorean Comma (1.0136) Adjustment to Fix the			► Unison	1.0000	1.0000	+.00
"Major 3rd Problem."			Minor Second	25/24 = 1.0417	1.05946	
			Major Second	9/8 = 1.1250	1.12246	▲ Ratio +.00 +.008 Audible Difference 001 Inaudible Differenc
What's the Major 3rd Problem?	ing		Minor Third	6/5 = 1.2000	1.18921	
5/4 (1.25x) is not the correct ratio for the Major 3rd. This is a Fraction, and it should be a CONSTANT of	uired for Tun		Major Third	5/4 = 1.2500	1.25992	+.008
			Fourth	4/3 = 1.3333	1.33483	Audible Difference
			Diminished Fifth	45/32 = 1.4063	1.41421	
1.259921 (1.26)			► Fifth	3/2 = 1.5000	1.49831	001
Here's why: The Octave Doubling	seq		Minor Sixth	8/5 = 1.6000	1.58740	
Ratio is 2.00. 1(1.25^3) ≠ 2.00	<u> </u>	4	Major Sixth	5/3 = 1.6667	1.68179	
In contrast, 1(1.26^3 = 2.00)			Minor Seventh	9/5 = 1.8000	1.78180	
			Major Seventh	15/8 = 1.8750	1.88775	

Octave

2.0000

+.00

"The ratio of 5/4 (1.25) is wholly inadequate as a viable approach for the Major 3rd, as, if continued, will never achieve a correct doubling of an octave. This is the interval that totally destroys "Just" Tuning as a viable tuning approach. It is so obvious in fact, that I believe that Pythagoras must have intentionally obfuscated it to conceal the correct 1.26 ratio."

R. Grant 7-17-20

2.0000

But, Does Nature Make Such Linear Separations for Musical Notes?

How to reconcile the 'convenience' of Equal Temperament with the clean mathematical intervals of 'Just' Scale Tuning?

'The Controversy'

"Just intonation emphasizes bright, booming perfect thirds, but the way the maths works out, that means the fifth between D and A is pushed out of tune. Equal temperament pretends you can have it both ways; Just Intonation makes a conscious choice about which intervals matter most. The argument goes that equal temperament is becoming increasingly streamlined and corporate, and man's capacity to hear and feel subtle inflections of tuning is now in slow retreat."

-Philip Clark

R. Grant 7-17-20

Equal Temperament

12 Equal/Linear Separations of the Frequency Range of an Octave

Equal Temperament Transition From Just Tuning

Interval	Ratio to Fundamental Just Scale	Ratio to Fundamental Equal Temperament	Equal Te	REG Emperament Equation	'Reduced'	
Unison	1.0000	1.0000	1.00	1.00	1.00	
Minor Second	25/24 = 1.0417	1.05946	^{12/1} √ 2	1.059463094359295	¹² /2	
Major Second	9/8 = 1.1250	1.12246	^{12/2} √ 2	1.122462048309373	⁶ √2	
Minor Third	6/5 = 1.2000	1.18921	^{12/3} √2	1.189207115002721	4∕2	
Major Third	5/4 = 1.2500	1.25992	^{12/4} √ 2	1.259921049894873	³ √ 2	
Fourth	4/3 = 1.3333	1.33483	^{12/5} √ 2	1.334839854170034	^{12/5} /2	
Diminished Fifth	45/32 = 1.4063	1.41421	^{12/6} √2	1.414213562373095	√2	
Fifth	3/2 = 1.5000	1.49831	^{12/7} √ 2	1.498307076876681	^{12/7} /2	
Minor Sixth	8/5 = 1.6000	1.58740	^{12/8} √ 2	1.587401051968199	^{3/2} /2	
Major Sixth	5/3 = 1.6667	1.68179	^{12/9} √2	1.681792830507429	^{4/3} √2	
Minor Seventh	9/5 = 1.8000	1.78180	^{12/10} √2	1.781797436280679	^{6/5} √2	
Major Seventh	15/8 = 1.8750	1.88775	^{12/11} /2	1.887748625363387	^{12/11} √ 2	
Octave	2.0000	2.0000	2.00	2.00	2.00	R. Grant
						7-17-20

The Mathematics of Equal Temperament is Based Upon $\sqrt{2}$

"It's a system that overcomes the acounstic problem of shifting tonal centre from, say, C to somewhere remote, like B, where suddenly the spectrum of overtones will fall out of 'Just' mathematical alignment and the music gets yanked audibly out of tune." – Philip Clark

With One Adjustment to the Major 3rd (from 1.25x to 1.26x) 'Just' Scale Tuning Reconciles with Equal Temperament in a New Tuning: 'Precise' Temperament Tuning in 432hz

			<u>Ratio to</u>	
Interval	Ratio to Fundamental Ratio to Fundament		<u>Fundamental</u> Precise Temperament	
	Just Scale	Equal Temperament		
Unison	1.0000	1.0000	1.00	
Minor Second	25/24 = 1.0417	1.05946	1.058	
Major Second	9/8 = 1.1250	1.12246	1.125	
Minor Third	6/5 = 1.2000	1.18921	1.190	
Major Third	5/4 = 1.2500	1.25992	1.26 Matches	Equal Temp
Fourth	4/3 € 1.3333	1.33483	1.333	
Diminished Fifth	45/32 = 1.4063	1.41421	1.414	
Fifth	3/2 € 1.5000	1.49831	1.5 Maintains	Just Interval
Minor Sixth	8/5 = 1.6000	1.58740	1.587	
Major Sixth	5/3 = 1.6667	1.68179	1.68	
Minor Seventh	9/5 = 1.8000	1.78180	1.786	
Major Seventh	15/8 = 1.8750	1.88775	1.889	
Octave	2.0000	2.0000	2.00	

R. Grant 7-17-20

'Precise' Temperament Tuning in 432hz

'Precise Temperament' vs Equal/Just									
Interval	Ratio to Fundamental Just Scale	Ratio to Fundamental Equal Temperament	Equal Temp <u>432hz</u>	<u>bered</u>	<u> </u>	<u>Δ Ratio</u>	Precise Tempered 432hz	<u>Ratio to</u> Fundam Precise '	<u>iental</u> Temp.
Unison	1.0000	1.0000	432hz	+.081hz	A5	+.000019	432.0 <u>81216</u> hz	1.00	
Minor Second	25/24 = 1.0417	1.05946	457.688hz	459hz	A#	001	457.2 <u>288</u> hz	1.058	
Major Second	9/8 = 1.1250	1.12246	484.903hz	+1.188hz	В	+.00245	486.091 <u>368</u> hz	1.125	
Minor Third	6/5 = 1.2000	1.18921	513.737hz	+.742hz	С	+.0014	514.4791038 <u>912</u> hz	1.190	
Major Third	5/4 = 1.2500	1.25992	544.285hz	+.137hz	C#	+.00025	544.42233 <u>216</u> hz	1.26	
Fourth	4/3 = 1.3333	1.33483	576.650hz	541hz	D	00094	576. <u>108288</u> hz	1.333	
Diminished Fifth	45/32 = 1.4063	1.41421	610.940hz	.000hz	D#	.000hz	610.9402589451 <u>771</u> h	z 1.414	
Fifth	3/2 = 1.5000	1.49831	647.268hz	+.975hz	Е	+.0015	648.243670902 <u>912</u> hz	1.50	
Minor Sixth	8/5 = 1.6000	1.58740	685.757hz	+.215hz	F	+.00031	685.9721385 <u>216</u> hz	1.587	
Major Sixth	5/3 = 1.6667	1.68179	726.534hz	774hz	F#	001	72 <u>5.76</u> hz	1.68	
Minor Seventh	9/5 = 1.8000	1.78180	769.736hz	+1.982hz	G	+.0025	771.7186558 <u>368</u> hz	1.786	
Major Seventh	15/8 = 1.8750	1.88775	815.507hz	+1.126hz	G#	+.0014	816.63349 <u>824</u> hz	1.889	
Octave	2.0000	2.0000	864hz	+.162hz	A6	+.00018	864. <u>162432</u> hz	2.00	
1 <u>.</u>									R. Grant 7-17-20

"Just" Scale Tuning

"Equal" Temperament Tuning

"Precise" Temperament Tuning

R. Grant 7-17-20

"Just" Scale Tuning

Why Precise Temperament Tuning?

'Precise Temperament'

Musical Geometry

The Cuboctahedral Structure Informs Major and Minor Chords

7-17-20

'Precise Temperament'

Musical Geometry

The Cuboctahedral Structure Informs Major and Minor Chords

But What About those Very Unique Decimal Extensions that Appear Using 1.26 as the Major 3rd Interval in Precise Temperament Tuning?.....

'Just Tuning' Intervals as Fractals in a Blockchain-like Configuration of Chords?

Let's take a close look at a few of these.....

D is the Major 4th of A

Blah, blah, blah..... but how does it sound?

https://soundcloud.com/jasonmartineau/tracks

D: minine : unditighe mich . nella fun opa gavelinigunea - chi

120

126

Centrate Congression of the server of the spectrum of the spec

Jovine of The Nop

How does 'Precise' Temperament Tuning effect the inherent Undertone Series? What is the potential for new sound-based technologies? How might this advance our understanding of gravity, radiation, time and energy?

More research and time will tell.....

~ Music of the Star Tetrahedron ~ Light Sound gravity 7-15-20 Radizbivity

The Flower of Life Squares in Rotational Positions

30°

The Flower of Life **Squares in Rotation** ${\pmb \Phi}$ ${\pmb \Phi}$ Φ ${\pmb \Phi}$ 120°Rotation 60°Rotation ${\pmb \Phi}$ 1.0 1.618

The Flower of Life Circles Only

The Flower of Life Circles and Squares

The Flower of Life Squares Only

Geometry and Music: One and the Same.....